Guide to the Secure Configuration of Red Hat Enterprise Linux 6
with profile CSCF RHEL6 MLS Core BaselineThis profile reflects the Centralized Super Computing Facility (CSCF) baseline for Red Hat Enterprise Linux 6. This baseline has received government ATO through the ICD 503 process, utilizing the CNSSI 1253 cross domain overlay. This profile should be considered in active development. Additional tailoring will be needed, such as the creation of RBAC roles for production deployment.
scap-security-guide
package which is developed at
http://fedorahosted.org/scap-security-guide.
Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in any operational scenario. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG for Red Hat Enterprise Linux 6, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.
Profile Title | CSCF RHEL6 MLS Core Baseline |
---|---|
Profile ID | xccdf_org.ssgproject.content_profile_CSCF-RHEL6-MLS |
Revision History
Current version: 0.1.26
- draft (as of 2015-11-25)
Platforms
- cpe:/o:redhat:enterprise_linux:6
- cpe:/o:redhat:enterprise_linux:6::client
Table of Contents
- System Settings
- Installing and Maintaining Software
- File Permissions and Masks
- SELinux
- Account and Access Control
- Network Configuration and Firewalls
- Configure Syslog
- System Accounting with auditd
- Services
Checklist
contains 215 rules |
System Settingsgroup |
contains 153 rules |
Installing and Maintaining SoftwaregroupThe following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates. |
contains 6 rules |
Disk PartitioninggroupTo ensure separation and protection of data, there
are top-level system directories which should be placed on their
own physical partition or logical volume. The installer's default
partitioning scheme creates separate logical volumes for
|
contains 1 rule |
Ensure /var/log/audit Located On Separate Partitionrule
Audit logs are stored in the
Placing |
Software Integrity Checkinggroup
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system.
|
contains 5 rules |
Verify Integrity with AIDEgroupAIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in |
contains 3 rules |
Install AIDEruleInstall the AIDE package with the command: $ sudo yum install aideRationale: The AIDE package must be installed if it is to be available for integrity checking. identifiers: CCE-27024-9, DISA FSO RHEL-06-000016 references: CM-3(d), CM-3(e), CM-6(d), SC-28, SI-7, 1069, Test attestation on 20121024 by DS
|
Disable Prelinkingrule
The prelinking feature changes binaries in an attempt to decrease their startup
time. In order to disable it, change or add the following line inside the file
PRELINKING=noNext, run the following command to return binaries to a normal, non-prelinked state: $ sudo /usr/sbin/prelink -uaRationale: The prelinking feature can interfere with the operation of AIDE, because it changes binaries. Remediation script:
|
Build and Test AIDE DatabaseruleRun the following command to generate a new database: $ sudo /usr/sbin/aide --initBy default, the database will be written to the file /var/lib/aide/aide.db.new.gz .
Storing the database, the configuration file /etc/aide.conf , and the binary
/usr/sbin/aide (or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity.
The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gzTo initiate a manual check, run the following command: $ sudo /usr/sbin/aide --checkIf this check produces any unexpected output, investigate. Rationale: For AIDE to be effective, an initial database of "known-good" information about files must be captured and it should be able to be verified against the installed files. identifiers: CCE-27135-3, DISA FSO RHEL-06-000018 references: CM-3(d), CM-3(e), CM-6(d), SC-28, SI-7, 374, 416, 1069, 1263, 1297, 1589
|
Additional Security SoftwaregroupAdditional security software that is not provided or supported by Red Hat can be installed to provide complementary or duplicative security capabilities to those provided by the base platform. Add-on software may not be appropriate for some specialized systems. |
contains 2 rules |
Install Intrusion Detection Softwarerule
The base Red Hat platform already includes a sophisticated auditing system that
can detect intruder activity, as well as SELinux, which provides host-based
intrusion prevention capabilities by confining privileged programs and user
sessions which may become compromised. Host-based intrusion detection tools provide a system-level defense when an intruder gains access to a system or network. |
Install Virus Scanning SoftwareruleInstall virus scanning software, which uses signatures to search for the presence of viruses on the filesystem. The McAfee VirusScan Enterprise for Linux virus scanning tool is provided for DoD systems. Ensure virus definition files are no older than 7 days, or their last release. Configure the virus scanning software to perform scans dynamically on all accessed files. If this is not possible, configure the system to scan all altered files on the system on a daily basis. If the system processes inbound SMTP mail, configure the virus scanner to scan all received mail. Rationale:Virus scanning software can be used to detect if a system has been compromised by computer viruses, as well as to limit their spread to other systems. |
File Permissions and MasksgroupTraditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
$ mount -t ext4 | awk '{print $3}'For any systems that use a different local filesystem type, modify this command as appropriate. |
contains 39 rules |
Restrict Partition Mount OptionsgroupSystem partitions can be mounted with certain options
that limit what files on those partitions can do. These options
are set in the |
contains 6 rules |
Add nodev Option to Non-Root Local PartitionsruleThe The identifiers: CCE-27045-4 references: CM-7
|
Add nodev Option to /tmprule
The The only legitimate location for device files is the |
Add nosuid Option to /tmpruleThe The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions. |
Add nodev Option to /dev/shmruleThe The only legitimate location for device files is the
|
Add noexec Option to /dev/shmruleThe Allowing users to execute binaries from world-writable directories
such as
|
Add nosuid Option to /dev/shmruleThe The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions. Remediation script:
|
Restrict Dynamic Mounting and Unmounting of FilesystemsgroupLinux includes a number of facilities for the automated addition
and removal of filesystems on a running system. These facilities may be
necessary in many environments, but this capability also carries some risk -- whether direct
risk from allowing users to introduce arbitrary filesystems,
or risk that software flaws in the automated mount facility itself could
allow an attacker to compromise the system.
$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d .
|
contains 11 rules |
Disable Modprobe Loading of USB Storage Driverrule
To prevent USB storage devices from being used, configure the kernel module loading system
to prevent automatic loading of the USB storage driver.
To configure the system to prevent the install usb-storage /bin/trueThis will prevent the modprobe program from loading the usb-storage
module, but will not prevent an administrator (or another program) from using the
insmod program to load the module manually.Rationale:USB storage devices such as thumb drives can be used to introduce malicious software. Remediation script:
|
Disable Booting from USB Devices in Boot FirmwareruleConfigure the system boot firmware (historically called BIOS on PC systems) to disallow booting from USB drives. Rationale:Booting a system from a USB device would allow an attacker to circumvent any security measures provided by the operating system. Attackers could mount partitions and modify the configuration of the OS. |
Disable the AutomounterruleThe $ sudo chkconfig autofs offRationale: Disabling the automounter permits the administrator to
statically control filesystem mounting through
|
Disable GNOME AutomountingruleThe system's default desktop environment, GNOME, will mount devices and removable media (such as DVDs, CDs and USB flash drives) whenever they are inserted into the system. Disable automount and autorun within GNOME by running the following: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /apps/nautilus/preferences/media_automount false $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /apps/nautilus/preferences/media_autorun_never trueRationale: Disabling automatic mounting in GNOME can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media. |
Disable Mounting of cramfsrule
To configure the system to prevent the install cramfs /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26340-0 references: CM-7
|
Disable Mounting of freevxfsrule
To configure the system to prevent the install freevxfs /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26544-7 references: CM-7
|
Disable Mounting of jffs2rule
To configure the system to prevent the install jffs2 /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26670-0 references: CM-7
|
Disable Mounting of hfsrule
To configure the system to prevent the install hfs /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26800-3 references: CM-7
|
Disable Mounting of hfsplusrule
To configure the system to prevent the install hfsplus /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26361-6 references: CM-7
|
Disable Mounting of squashfsrule
To configure the system to prevent the install squashfs /bin/trueThis effectively prevents usage of this uncommon filesystem. Rationale: Linux kernel modules which implement filesystems that are not needed by the local system should be disabled. identifiers: CCE-26404-4 references: CM-7
|
Disable All GNOME ThumbnailersruleThe system's default desktop environment, GNOME, uses a number of different thumbnailer programs to generate thumbnails for any new or modified content in an opened folder. The following command can disable the execution of these thumbnail applications: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /desktop/gnome/thumbnailers/disable_all trueThis effectively prevents an attacker from gaining access to a system through a flaw in GNOME's Nautilus thumbnail creators. Rationale: An attacker with knowledge of a flaw in a GNOME thumbnailer application could craft a malicious file to exploit this flaw. Assuming the attacker could place the malicious file on the local filesystem (via a web upload for example) and assuming a user browses the same location using Nautilus, the malicious file would exploit the thumbnailer with the potential for malicious code execution. It is best to disable these thumbnailer applications unless they are explicitly required. identifiers: CCE-27224-5 references: CM-7 |
Verify Permissions on Important Files and DirectoriesgroupPermissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen. |
contains 16 rules |
Verify Permissions on Files with Local Account Information and CredentialsgroupThe default restrictive permissions for files which act as
important security databases such as |
contains 12 rules |
Verify User Who Owns shadow Filerule
To properly set the owner of $ sudo chown root /etc/shadowRationale: The identifiers: CCE-26947-2, DISA FSO RHEL-06-000033 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Group Who Owns shadow Filerule
To properly set the group owner of $ sudo chgrp root /etc/shadowRationale: The identifiers: CCE-26967-0, DISA FSO RHEL-06-000034 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Permissions on shadow Filerule
To properly set the permissions of $ sudo chmod 0000 /etc/shadowRationale: The identifiers: CCE-26992-8, DISA FSO RHEL-06-000035 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify User Who Owns group Filerule
To properly set the owner of $ sudo chown root /etc/groupRationale: The identifiers: CCE-26822-7, DISA FSO RHEL-06-000042 references: AC-6, Test attestation on 20121026 by DS
|
Verify Group Who Owns group Filerule
To properly set the group owner of $ sudo chgrp root /etc/groupRationale: The identifiers: CCE-26930-8, DISA FSO RHEL-06-000043 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Permissions on group Filerule
To properly set the permissions of $ sudo chmod 644 /etc/groupRationale: The identifiers: CCE-26954-8, DISA FSO RHEL-06-000044 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify User Who Owns gshadow Filerule
To properly set the owner of $ sudo chown root /etc/gshadowRationale: The identifiers: CCE-27026-4, DISA FSO RHEL-06-000036 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Group Who Owns gshadow Filerule
To properly set the group owner of $ sudo chgrp root /etc/gshadowRationale: The identifiers: CCE-26975-3, DISA FSO RHEL-06-000037 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Permissions on gshadow Filerule
To properly set the permissions of $ sudo chmod 0000 /etc/gshadowRationale: The identifiers: CCE-26951-4, DISA FSO RHEL-06-000038 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify User Who Owns passwd Filerule
To properly set the owner of $ sudo chown root /etc/passwdRationale: The identifiers: CCE-26953-0, DISA FSO RHEL-06-000039 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Group Who Owns passwd Filerule
To properly set the group owner of $ sudo chgrp root /etc/passwdRationale: The identifiers: CCE-26856-5, DISA FSO RHEL-06-000040 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify Permissions on passwd Filerule
To properly set the permissions of $ sudo chmod 0644 /etc/passwdRationale: If the identifiers: CCE-26868-0, DISA FSO RHEL-06-000041 references: AC-6, 225, Test attestation on 20121026 by DS
|
Verify File Permissions Within Some Important DirectoriesgroupSome directories contain files whose confidentiality or integrity is notably important and may also be susceptible to misconfiguration over time, particularly if unpackaged software is installed. As such, an argument exists to verify that files' permissions within these directories remain configured correctly and restrictively. |
contains 3 rules |
Verify that Shared Library Files Have Root OwnershipruleSystem-wide shared library files, which are linked to executables during process load time or run time, are stored in the following directories by default: /lib /lib64 /usr/lib /usr/lib64Kernel modules, which can be added to the kernel during runtime, are also stored in /lib/modules . All files in these directories should be
owned by the root user. If the directory, or any file in these
directories, is found to be owned by a user other than root correct its
ownership with the following command:
$ sudo chown root FILERationale: Files from shared library directories are loaded into the address space of processes (including privileged ones) or of the kernel itself at runtime. Proper ownership is necessary to protect the integrity of the system. identifiers: CCE-27424-1, DISA FSO RHEL-06-000046 references: AC-6, 1499, Test attestation on 20130914 by swells
|
Verify that System Executables Have Restrictive PermissionsruleSystem executables are stored in the following directories by default: /bin /sbin /usr/bin /usr/libexec /usr/local/bin /usr/local/sbin /usr/sbinAll files in these directories should not be group-writable or world-writable. If any file FILE in these directories is found to be group-writable or world-writable, correct its permission with the following command: $ sudo chmod go-w FILERationale: System binaries are executed by privileged users, as well as system services, and restrictive permissions are necessary to ensure execution of these programs cannot be co-opted. Remediation script:
|
Verify that System Executables Have Root OwnershipruleSystem executables are stored in the following directories by default: /bin /sbin /usr/bin /usr/libexec /usr/local/bin /usr/local/sbin /usr/sbinAll files in these directories should be owned by the root user.
If any file FILE in these directories is found
to be owned by a user other than root, correct its ownership with the
following command:
$ sudo chown root FILERationale: System binaries are executed by privileged users as well as system services, and restrictive permissions are necessary to ensure that their execution of these programs cannot be co-opted. Remediation script:
|
Ensure All SGID Executables Are AuthorizedruleThe SGID (set group id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SGID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SGID files. Rationale:Executable files with the SGID permission run with the privileges of the owner of the file. SGID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system. identifiers: CCE-26769-0 references: AC-6(1) |
Restrict Programs from Dangerous Execution PatternsgroupThe recommendations in this section are designed to ensure that the system's features to protect against potentially dangerous program execution are activated. These protections are applied at the system initialization or kernel level, and defend against certain types of badly-configured or compromised programs. |
contains 6 rules |
Daemon UmaskgroupThe umask is a per-process setting which limits the default permissions for creation of new files and directories. The system includes initialization scripts which set the default umask for system daemons. |
contains 1 rule |
Set Daemon UmaskruleThe file umask 022Setting the umask to too restrictive a setting can cause serious errors at runtime. Many daemons on the system already individually restrict themselves to a umask of 077 in their own init scripts. Rationale: The umask influences the permissions assigned to files created by a process at run time. An unnecessarily permissive umask could result in files being created with insecure permissions. identifiers: CCE-27031-4, DISA FSO RHEL-06-000346 references: AC-6, Test attestation on 20140912 by JL
|
Disable Core DumpsgroupA core dump file is the memory image of an executable
program when it was terminated by the operating system due to
errant behavior. In most cases, only software developers
legitimately need to access these files. The core dump files may
also contain sensitive information, or unnecessarily occupy large
amounts of disk space.
|
contains 2 rules |
Disable Core Dumps for All UsersruleTo disable core dumps for all users, add the following line to
* hard core 0Rationale: A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers trying to debug problems. identifiers: CCE-27033-0, DISA FSO RHEL-06-000308 references: SC-5
|
Disable Core Dumps for SUID programsrule
To set the runtime status of the $ sudo sysctl -w fs.suid_dumpable=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
fs.suid_dumpable = 0Rationale: The core dump of a setuid program is more likely to contain sensitive data, as the program itself runs with greater privileges than the user who initiated execution of the program. Disabling the ability for any setuid program to write a core file decreases the risk of unauthorized access of such data. identifiers: CCE-27044-7 references: SI-11
|
Enable ExecShieldgroupExecShield describes kernel features that provide
protection against exploitation of memory corruption errors such as buffer
overflows. These features include random placement of the stack and other
memory regions, prevention of execution in memory that should only hold data,
and special handling of text buffers. These protections are enabled by default and
controlled through |
contains 2 rules |
Enable ExecShieldrule
To set the runtime status of the $ sudo sysctl -w kernel.exec-shield=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
kernel.exec-shield = 1Rationale: ExecShield uses the segmentation feature on all x86 systems to prevent execution in memory higher than a certain address. It writes an address as a limit in the code segment descriptor, to control where code can be executed, on a per-process basis. When the kernel places a process's memory regions such as the stack and heap higher than this address, the hardware prevents execution in that address range. identifiers: CCE-27007-4, DISA FSO RHEL-06-000079 references: SC-39, 2530, Test attestation on 20121024 by DS
|
Enable Randomized Layout of Virtual Address Spacerule
To set the runtime status of the $ sudo sysctl -w kernel.randomize_va_space=2If this is not the system's default value, add the following line to /etc/sysctl.conf :
kernel.randomize_va_space = 2Rationale: Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques. identifiers: CCE-26999-3, DISA FSO RHEL-06-000078 references: SC-30(2), Test attestation on 20121024 by DS
|
Enable Execute Disable (XD) or No Execute (NX) Support on x86 SystemsgroupRecent processors in the x86 family support the ability to prevent code execution on a per memory page basis. Generically and on AMD processors, this ability is called No Execute (NX), while on Intel processors it is called Execute Disable (XD). This ability can help prevent exploitation of buffer overflow vulnerabilities and should be activated whenever possible. Extra steps must be taken to ensure that this protection is enabled, particularly on 32-bit x86 systems. Other processors, such as Itanium and POWER, have included such support since inception and the standard kernel for those platforms supports the feature. |
contains 1 rule |
Enable NX or XD Support in the BIOSruleReboot the system and enter the BIOS or Setup configuration menu. Navigate the BIOS configuration menu and make sure that the option is enabled. The setting may be located under a Security section. Look for Execute Disable (XD) on Intel-based systems and No Execute (NX) on AMD-based systems. Rationale:Computers with the ability to prevent this type of code execution frequently put an option in the BIOS that will allow users to turn the feature on or off at will. identifiers: CCE-27163-5 references: CM-6(b) |
SELinuxgroupSELinux is a feature of the Linux kernel which can be
used to guard against misconfigured or compromised programs.
SELinux enforces the idea that programs should be limited in what
files they can access and what actions they can take.
|
contains 5 rules |
Ensure SELinux Not Disabled in /etc/grub.confruleSELinux can be disabled at boot time by an argument in
Disabling a major host protection feature, such as SELinux, at boot time prevents it from confining system services at boot time. Further, it increases the chances that it will remain off during system operation. identifiers: CCE-26956-3, DISA FSO RHEL-06-000017 references: AC-3, AC-3(3), AC-6, AU-9, 22, 32, Test attestation on 20121024 by DS
|
Ensure SELinux State is EnforcingruleThe SELinux state should be set to SELINUX=enforcingRationale: Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges. |
Configure SELinux PolicyruleThe SELinux SELINUXTYPE=mlsOther policies, such as mls , provide additional security labeling
and greater confinement but are not compatible with many general-purpose
use cases.
Rationale:
Setting the SELinux policy to |
Ensure No Daemons are Unconfined by SELinuxrule
Daemons for which the SELinux policy does not contain rules will inherit the
context of the parent process. Because daemons are launched during
startup and descend from the $ sudo ps -eZ | egrep "initrc" | egrep -vw "tr|ps|egrep|bash|awk" | tr ':' ' ' | awk '{ print $NF }'It should produce no output in a well-configured system. Rationale:
Daemons which run with the |
Ensure No Device Files are Unknown to SELinuxruleDevice files, which are used for communication with important
system resources, should be labeled with proper SELinux types. If any device
files carry the SELinux type
If a device file carries the SELinux type |
Account and Access ControlgroupIn traditional Unix security, if an attacker gains shell access to a certain login account, they can perform any action or access any file to which that account has access. Therefore, making it more difficult for unauthorized people to gain shell access to accounts, particularly to privileged accounts, is a necessary part of securing a system. This section introduces mechanisms for restricting access to accounts under Red Hat Enterprise Linux 6. |
contains 28 rules |
Protect Accounts by Restricting Password-Based LogingroupConventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the |
contains 12 rules |
Restrict Root Loginsgroup
Direct root logins should be allowed only for emergency use.
In normal situations, the administrator should access the system
via a unique unprivileged account, and then use |
contains 4 rules |
Direct root Logins Not AllowedruleTo further limit access to the $ sudo echo > /etc/securettyRationale: Disabling direct root logins ensures proper accountability and multifactor authentication to privileged accounts. Users will first login, then escalate to privileged (root) access via su / sudo. This is required for FISMA Low and FISMA Moderate systems. identifiers: CCE-26891-2 references: IA-2(1), Test attestation on 20121024 by DS
|
Restrict Virtual Console Root Loginsrule
To restrict root logins through the (deprecated) virtual console devices,
ensure lines of this form do not appear in vc/1 vc/2 vc/3 vc/4Rationale: Preventing direct root login to virtual console devices helps ensure accountability for actions taken on the system using the root account. identifiers: CCE-26855-7, DISA FSO RHEL-06-000027 references: AC-6(2), 770, Test attestation on 20121024 by DS
|
Restrict Serial Port Root LoginsruleTo restrict root logins on serial ports,
ensure lines of this form do not appear in ttyS0 ttyS1Rationale: Preventing direct root login to serial port interfaces helps ensure accountability for actions taken on the systems using the root account. identifiers: CCE-27047-0, DISA FSO RHEL-06-000028 references: AC-6(2), 770, Test attestation on 20121024 by DS
|
Verify Only Root Has UID 0ruleIf any account other than root has a UID of 0, this misconfiguration should be investigated and the accounts other than root should be removed or have their UID changed. Rationale:An account has root authority if it has a UID of 0. Multiple accounts with a UID of 0 afford more opportunity for potential intruders to guess a password for a privileged account. Proper configuration of sudo is recommended to afford multiple system administrators access to root privileges in an accountable manner. identifiers: CCE-26971-2, DISA FSO RHEL-06-000032 references: AC-6, IA-2(1), 366, Test attestation on 20121024 by DS
|
Verify Proper Storage and Existence of Password Hashesgroup
By default, password hashes for local accounts are stored
in the second field (colon-separated) in
|
contains 3 rules |
Prevent Log In to Accounts With Empty PasswordruleIf an account is configured for password authentication
but does not have an assigned password, it may be possible to log
onto the account without authentication. Remove any instances of the If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments. identifiers: CCE-27038-9, DISA FSO RHEL-06-000030 references: IA-5(b), IA-5(c), IA-5(1)(a), Test attestation on 20121024 by DS
|
Verify All Account Password Hashes are Shadowedrule
If any password hashes are stored in
The hashes for all user account passwords should be stored in
the file identifiers: CCE-26476-2, DISA FSO RHEL-06-000031 references: IA-5(h), 201, Test attestation on 20121024 by DS |
Verify No netrc Files ExistruleThe
Unencrypted passwords for remote FTP servers may be stored in |
Set Password Expiration ParametersgroupThe file $ sudo chage -M 180 -m 7 -W 7 USER |
contains 3 rules |
Set Password Minimum Length in login.defsruleTo specify password length requirements for new accounts,
edit the file PASS_MIN_LEN 12 The DoD requirement is 14 .
The FISMA requirement is 12 .
If a program consults /etc/login.defs and also another PAM module
(such as pam_cracklib ) during a password change operation,
then the most restrictive must be satisfied. See PAM section
for more information about enforcing password quality requirements.
Rationale:Requiring a minimum password length makes password cracking attacks more difficult by ensuring a larger search space. However, any security benefit from an onerous requirement must be carefully weighed against usability problems, support costs, or counterproductive behavior that may result. identifiers: CCE-27002-5, DISA FSO RHEL-06-000050 references: IA-5(f), IA-5(1)(a), 205, Test attestation on 20121026 by DS
|
Set Password Maximum AgeruleTo specify password maximum age for new accounts,
edit the file PASS_MAX_DAYS 180A value of 180 days is sufficient for many environments. The DoD requirement is 60. Rationale: Setting the password maximum age ensures users are required to periodically change their passwords. This could possibly decrease the utility of a stolen password. Requiring shorter password lifetimes increases the risk of users writing down the password in a convenient location subject to physical compromise. identifiers: CCE-26985-2, DISA FSO RHEL-06-000053 references: IA-5(f), IA-5(g), IA-5(1)(d), 180, 199, 76, Test attestation on 20121026 by DS
|
Set Password Warning AgeruleTo specify how many days prior to password
expiration that a warning will be issued to users,
edit the file PASS_WARN_AGE 7The DoD requirement is 7. Rationale: Setting the password warning age enables users to make the change at a practical time. identifiers: CCE-26988-6, DISA FSO RHEL-06-000054 references: AC-2(2), IA-5(f), Test attestation on 20121026 by DS
|
Set Account Expiration ParametersgroupAccounts can be configured to be automatically disabled
after a certain time period,
meaning that they will require administrator interaction to become usable again.
Expiration of accounts after inactivity can be set for all accounts by default
and also on a per-account basis, such as for accounts that are known to be temporary.
To configure automatic expiration of an account following
the expiration of its password (that is, after the password has expired and not been changed),
run the following command, substituting $ sudo chage -I NUM_DAYS USERAccounts, such as temporary accounts, can also be configured to expire on an explicitly-set date with the -E option.
The file /etc/default/useradd controls
default settings for all newly-created accounts created with the system's
normal command line utilities.
|
contains 2 rules |
Set Account Expiration Following InactivityruleTo specify the number of days after a password expires (which
signifies inactivity) until an account is permanently disabled, add or correct
the following lines in INACTIVE=UNDEFINED_SUBA value of 35 is recommended. If a password is currently on the verge of expiration, then 35 days remain until the account is automatically disabled. However, if the password will not expire for another 60 days, then 95 days could elapse until the account would be automatically disabled. See the useradd man page for more information. Determining the inactivity
timeout must be done with careful consideration of the length of a "normal"
period of inactivity for users in the particular environment. Setting
the timeout too low incurs support costs and also has the potential to impact
availability of the system to legitimate users.
Rationale:Disabling inactive accounts ensures that accounts which may not have been responsibly removed are not available to attackers who may have compromised their credentials. Remediation script:
|
Assign Expiration Date to Temporary Accountsrule
In the event temporary or emergency accounts are required, configure the system
to terminate them after a documented time period. For every temporary and
emergency account, run the following command to set an expiration date on it,
substituting $ sudo chage -E YYYY-MM-DD USER YYYY-MM-DD indicates the documented expiration date for the account.
Rationale:
When temporary and emergency accounts are created, there is a risk they may
remain in place and active after the need for them no longer exists. Account
expiration greatly reduces the risk of accounts being misused or hijacked.
|
Protect Accounts by Configuring PAMgroupPAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
warning
Be careful when making changes to PAM's
configuration files. The syntax for these files is complex, and
modifications can have unexpected consequences. The default
configurations shipped with applications should be sufficient for
most users. warning
Running authconfig or
system-config-authentication will re-write the PAM configuration
files, destroying any manually made changes and replacing them with
a series of system defaults. One reference to the configuration
file syntax can be found at
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/sag-configuration-file.html. |
contains 10 rules |
Set Password Quality RequirementsgroupThe default |
contains 6 rules |
Set Password Quality Requirements, if using pam_cracklibgroupThe password requisite pam_cracklib.so try_first_pass retry=3and then alter it to read: password required pam_cracklib.so try_first_pass retry=3 maxrepeat=3 minlen=14 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1 difok=4If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows.
warning
Note that the password quality
requirements are not enforced for the root account for some
reason. |
contains 6 rules |
Set Password Retry Prompts Permitted Per-SessionruleTo configure the number of retry prompts that are permitted per-session:
Setting the password retry prompts that are permitted on a per-session basis to a low value requires some software, such as SSH, to re-connect. This can slow down and draw additional attention to some types of password-guessing attacks. Note that this is different from account lockout, which is provided by the pam_faillock module. identifiers: CCE-27123-9 references: IA-5(c), 1092, Test attestation on 20121024 by DS |
Set Password Strength Minimum Digit CharactersruleThe pam_cracklib module's Requiring digits makes password guessing attacks more difficult by ensuring a larger search space. identifiers: CCE-26374-9, DISA FSO RHEL-06-000056 references: IA-5(b), IA-5(c), 194, 194, Test attestation on 20121024 by DS
|
Set Password Strength Minimum Uppercase CharactersruleThe pam_cracklib module's Requiring a minimum number of uppercase characters makes password guessing attacks more difficult by ensuring a larger search space. identifiers: CCE-26601-5, DISA FSO RHEL-06-000057 references: IA-5(b), IA-5(c), IA-5(1)(a), 192, Test attestation on 20121024 by DS
|
Set Password Strength Minimum Special CharactersruleThe pam_cracklib module's Requiring a minimum number of special characters makes password guessing attacks more difficult by ensuring a larger search space. identifiers: CCE-26409-3, DISA FSO RHEL-06-000058 references: IA-5(b), IA-5(c), IA-5(1)(a), 1619, 266, Test attestation on 20121024 by DS
|
Set Password Strength Minimum Lowercase CharactersruleThe pam_cracklib module's Requiring a minimum number of lowercase characters makes password guessing attacks more difficult by ensuring a larger search space. identifiers: CCE-26631-2, DISA FSO RHEL-06-000059 references: IA-5(b), IA-5(c), IA-5(1)(a), 193, Test attestation on 20121024 by DS
|
Set Password Strength Minimum Different CharactersruleThe pam_cracklib module's Requiring a minimum number of different characters during password changes ensures that newly changed passwords should not resemble previously compromised ones. Note that passwords which are changed on compromised systems will still be compromised, however. identifiers: CCE-26615-5, DISA FSO RHEL-06-000060 references: IA-5(b), IA-5(c), IA-5(1)(b), 195, Test attestation on 20121024 by DS
|
Set Lockouts for Failed Password AttemptsgroupThe warning
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
contains 1 rule |
Limit Password ReuseruleDo not allow users to reuse recent passwords. This can be
accomplished by using the
Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user. identifiers: CCE-26741-9, DISA FSO RHEL-06-000274 references: IA-5(f), IA-5(1)(e), 200, Test attestation on 20121024 by DS
|
Set Password Hashing AlgorithmgroupThe system's default algorithm for storing password hashes in
|
contains 3 rules |
Set Password Hashing Algorithm in /etc/pam.d/system-authrule
In password sufficient pam_unix.so sha512 other arguments...This will help ensure when local users change their passwords, hashes for the new passwords will be generated using the SHA-512 algorithm. This is the default. Rationale: Using a stronger hashing algorithm makes password cracking attacks more difficult. identifiers: CCE-26303-8, DISA FSO RHEL-06-000062 references: IA-5(b), IA-5(c), IA-5(1)(c), IA-7, 803, Test attestation on 20121024 by DS
|
Set Password Hashing Algorithm in /etc/login.defsrule
In ENCRYPT_METHOD SHA512Rationale: Using a stronger hashing algorithm makes password cracking attacks more difficult. identifiers: CCE-27228-6, DISA FSO RHEL-06-000063 references: IA-5(b), IA-5(c), IA-5(1)(c), IA-7, 803, Test attestation on 20121024 by DS
|
Set Password Hashing Algorithm in /etc/libuser.confrule
In crypt_style = sha512Rationale: Using a stronger hashing algorithm makes password cracking attacks more difficult. identifiers: CCE-27229-4, DISA FSO RHEL-06-000064 references: IA-5(b), IA-5(c), IA-5(1)(c), IA-7, 803, Test attestation on 20121026 by DS |
Protect Physical Console AccessgroupIt is impossible to fully protect a system from an attacker with physical access, so securing the space in which the system is located should be considered a necessary step. However, there are some steps which, if taken, make it more difficult for an attacker to quickly or undetectably modify a system from its console. |
contains 5 rules |
Set Boot Loader PasswordgroupDuring the boot process, the boot loader is responsible for starting the execution of the kernel and passing options to it. The boot loader allows for the selection of different kernels - possibly on different partitions or media. The default Red Hat Enterprise Linux boot loader for x86 systems is called GRUB. Options it can pass to the kernel include single-user mode, which provides root access without any authentication, and the ability to disable SELinux. To prevent local users from modifying the boot parameters and endangering security, protect the boot loader configuration with a password and ensure its configuration file's permissions are set properly. |
contains 1 rule |
Set Boot Loader PasswordruleThe grub boot loader should have password protection enabled to protect boot-time settings. To do so, select a password and then generate a hash from it by running the following command: $ grub-crypt --sha-512When prompted to enter a password, insert the following line into /etc/grub.conf
immediately after the header comments. (Use the output from grub-crypt as the
value of password-hash):
password --encrypted password-hashNOTE: To meet FISMA Moderate, the bootloader password MUST differ from the root password. Rationale: Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. identifiers: CCE-26911-8, DISA FSO RHEL-06-000068 references: IA-2(1), IA-5(e) AC-3, 213, Test attestation on 20121026 by DS |
Configure Screen LockinggroupWhen a user must temporarily leave an account
logged-in, screen locking should be employed to prevent passersby
from abusing the account. User education and training is
particularly important for screen locking to be effective, and policies
can be implemented to reinforce this.
|
contains 3 rules |
Configure GUI Screen LockinggroupIn the default GNOME desktop, the screen can be locked
by choosing Lock Screen from the System menu.
|
contains 3 rules |
GNOME Desktop Screensaver Mandatory UseruleRun the following command to activate the screensaver in the GNOME desktop after a period of inactivity: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /apps/gnome-screensaver/idle_activation_enabled trueRationale: Enabling idle activation of the screensaver ensures the screensaver will be activated after the idle delay. Applications requiring continuous, real-time screen display (such as network management products) require the login session does not have administrator rights and the display station is located in a controlled-access area. Remediation script:
|
Enable Screen Lock Activation After Idle PeriodruleRun the following command to activate locking of the screensaver in the GNOME desktop when it is activated: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /apps/gnome-screensaver/lock_enabled trueRationale: Enabling the activation of the screen lock after an idle period ensures password entry will be required in order to access the system, preventing access by passersby. Remediation script:
|
Implement Blank ScreensaverruleRun the following command to set the screensaver mode in the GNOME desktop to a blank screen: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type string \ --set /apps/gnome-screensaver/mode blank-onlyRationale: Setting the screensaver mode to blank-only conceals the contents of the display from passersby. Remediation script:
|
Disable Interactive BootruleTo disable the ability for users to perform interactive startups, perform both of the following:
PROMPT option of the /etc/sysconfig/init file and
the confirm kernel boot argument of the /etc/grub.conf file
allow the console user to perform an interactive system startup, in which it is
possible to select the set of services which are started on boot.
Rationale:Using interactive boot, the console user could disable auditing, firewalls, or other services, weakening system security. identifiers: CCE-27043-9, DISA FSO RHEL-06-000070 references: SC-2, AC-3, 213, Test attestation on 20121024 by DS
|
Warning Banners for System AccessesgroupEach system should expose as little information about
itself as possible.
|
contains 1 rule |
Implement a GUI Warning BannergroupIn the default graphical environment, users logging directly into the system are greeted with a login screen provided by the GNOME Display Manager (GDM). The warning banner should be displayed in this graphical environment for these users. The following sections describe how to configure the GDM login banner. |
contains 1 rule |
Enable GUI Warning BannerruleTo enable displaying a login warning banner in the GNOME Display Manager's login screen, run the following command: $ sudo gconftool-2 --direct \ --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \ --type bool \ --set /apps/gdm/simple-greeter/banner_message_enable trueTo display a banner, this setting must be enabled and then banner text must also be set. Rationale: An appropriate warning message reinforces policy awareness during the login process and facilitates possible legal action against attackers. Remediation script:
|
Network Configuration and FirewallsgroupMost machines must be connected to a network of some
sort, and this brings with it the substantial risk of network
attack. This section discusses the security impact of decisions
about networking which must be made when configuring a system.
|
contains 30 rules |
Kernel Parameters Which Affect NetworkinggroupThe |
contains 15 rules |
Network Parameters for Hosts OnlygroupIf the system is not going to be used as a router, then setting certain kernel parameters ensure that the host will not perform routing of network traffic. |
contains 3 rules |
Disable Kernel Parameter for Sending ICMP Redirects by Defaultrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.default.send_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.send_redirects = 0Rationale: Sending ICMP redirects permits the system to instruct other systems to update their routing information. The ability to send ICMP redirects is only appropriate for systems acting as routers. identifiers: CCE-27001-7, DISA FSO RHEL-06-000080 references: AC-4, CM-7, SC-5, SC-7, 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Sending ICMP Redirects for All Interfacesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.send_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.send_redirects = 0Rationale: Sending ICMP redirects permits the system to instruct other systems to update their routing information. The ability to send ICMP redirects is only appropriate for systems acting as routers. identifiers: CCE-27004-1, DISA FSO RHEL-06-000081 references: CM-7, SC-5(1), 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for IP Forwardingrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.ip_forward=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.ip_forward = 0Rationale: IP forwarding permits the kernel to forward packets from one network interface to another. The ability to forward packets between two networks is only appropriate for systems acting as routers. identifiers: CCE-26866-4, DISA FSO RHEL-06-000082 references: CM-7, SC-5, 366, Test attestation on 20121024 by DS
|
Network Related Kernel Runtime Parameters for Hosts and RoutersgroupCertain kernel parameters should be set for systems which are acting as either hosts or routers to improve the system's ability defend against certain types of IPv4 protocol attacks. |
contains 12 rules |
Disable Kernel Parameter for Accepting Source-Routed Packets for All Interfacesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.accept_source_route = 0Rationale: Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-27037-1, DISA FSO RHEL-06-000083 references: CM-7, SC-5, 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Accepting ICMP Redirects for All Interfacesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.accept_redirects = 0Rationale: Accepting ICMP redirects has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-27027-2, DISA FSO RHEL-06-000084 references: CM-7, SC-5, 1503, 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Accepting Secure Redirects for All Interfacesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.secure_redirects = 0Rationale: Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-26854-0, DISA FSO RHEL-06-000086 references: AC-4, CM-7, SC-5, 1503, 1551, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Log Martian Packetsrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.log_martians=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.log_martians = 1Rationale: The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected. identifiers: CCE-27066-0, DISA FSO RHEL-06-000088 references: AC-3(10), CM-7, SC-5(3), 126, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Accepting Source-Routed Packets By Defaultrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.accept_source_route = 0Rationale: Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-26983-7, DISA FSO RHEL-06-000089 references: AC-4, CM-7, SC-5, SC-7, 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Accepting ICMP Redirects By Defaultrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.accept_redirects = 0Rationale: This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-27015-7, DISA FSO RHEL-06-000091 references: AC-4, CM-7, SC-5, SC-7, 1551, Test attestation on 20121024 by DS
|
Disable Kernel Parameter for Accepting Secure Redirects By Defaultrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.secure_redirects = 0Rationale: Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required. identifiers: CCE-26831-8, DISA FSO RHEL-06-000090 references: AC-4, CM-7, SC-5, SC-7, 1551, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Ignore ICMP Broadcast Echo Requestsrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.icmp_echo_ignore_broadcasts = 1Rationale: Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network. identifiers: CCE-26883-9, DISA FSO RHEL-06-000092 references: CM-7, SC-5, 1551, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Ignore Bogus ICMP Error Responsesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.icmp_ignore_bogus_error_responses = 1Rationale: Ignoring bogus ICMP error responses reduces log size, although some activity would not be logged. identifiers: CCE-26993-6, DISA FSO RHEL-06-000093 references: CM-7, SC-5, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Use TCP Syncookiesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.tcp_syncookies=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.tcp_syncookies = 1Rationale: A TCP SYN flood attack can cause a denial of service by filling a system's TCP connection table with connections in the SYN_RCVD state. Syncookies can be used to track a connection when a subsequent ACK is received, verifying the initiator is attempting a valid connection and is not a flood source. This feature is activated when a flood condition is detected, and enables the system to continue servicing valid connection requests. identifiers: CCE-27053-8, DISA FSO RHEL-06-000095 references: AC-4, SC-5(2), SC-5(3), 1092, 1095, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Use Reverse Path Filtering for All Interfacesrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.all.rp_filter=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.rp_filter = 1Rationale: Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. identifiers: CCE-26979-5, DISA FSO RHEL-06-000096 references: AC-4, SC-5, SC-7, 1551, Test attestation on 20121024 by DS
|
Enable Kernel Parameter to Use Reverse Path Filtering by Defaultrule
To set the runtime status of the $ sudo sysctl -w net.ipv4.conf.default.rp_filter=1If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.rp_filter = 1Rationale: Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks. identifiers: CCE-26915-9, DISA FSO RHEL-06-000097 references: AC-4, SC-5, SC-7, Test attestation on 20121024 by DS
|
Wireless NetworkinggroupWireless networking, such as 802.11
(WiFi) and Bluetooth, can present a security risk to sensitive or
classified systems and networks. Wireless networking hardware is
much more likely to be included in laptop or portable systems than
in desktops or servers.
|
contains 4 rules |
Disable Wireless Through Software ConfigurationgroupIf it is impossible to remove the wireless hardware from the device in question, disable as much of it as possible through software. The following methods can disable software support for wireless networking, but note that these methods do not prevent malicious software or careless users from re-activating the devices. |
contains 4 rules |
Disable WiFi or Bluetooth in BIOSruleSome systems that include built-in wireless support offer the ability to disable the device through the BIOS. This is system-specific; consult your hardware manual or explore the BIOS setup during boot. Rationale:Disabling wireless support in the BIOS prevents easy activation of the wireless interface, generally requiring administrators to reboot the system first. |
Deactivate Wireless Network InterfacesruleDeactivating wireless network interfaces should prevent
normal usage of the wireless capability.
$ ifconfig -aAdditionally, the following command may be used to determine whether wireless support is included for a particular interface, though this may not always be a clear indicator: $ iwconfigAfter identifying any wireless interfaces (which may have names like wlan0 , ath0 , wifi0 , em1 or
eth0 ), deactivate the interface with the command:
$ sudo ifdown interfaceThese changes will only last until the next reboot. To disable the interface for future boots, remove the appropriate interface file from /etc/sysconfig/network-scripts :
$ sudo rm /etc/sysconfig/network-scripts/ifcfg-interfaceRationale: Wireless networking allows attackers within physical proximity to launch network-based attacks against systems, including those against local LAN protocols which were not designed with security in mind. |
Disable Bluetooth Servicerule
The $ sudo chkconfig bluetooth off $ sudo service bluetooth stopRationale: Disabling the identifiers: CCE-27081-9, DISA FSO RHEL-06-000331 references: AC-18(a), AC-18(d), AC-18(3), CM-7, 85, 1551, Test attestation on 20121025 by DS
|
Disable Bluetooth Kernel ModulesruleThe kernel's module loading system can be configured to prevent
loading of the Bluetooth module. Add the following to
the appropriate install bluetooth /bin/trueRationale: If Bluetooth functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation. identifiers: CCE-26763-3, DISA FSO RHEL-06-000315 references: AC-18(a), AC-18(d), AC-18(3), CM-7, 85, 1551, Test attestation on 20141031 by JL
|
IPv6groupThe system includes support for Internet Protocol version 6. A major and often-mentioned improvement over IPv4 is its enormous increase in the number of available addresses. Another important feature is its support for automatic configuration of many network settings. |
contains 2 rules |
Disable Support for IPv6 Unless NeededgroupDespite configuration that suggests support for IPv6 has been disabled, link-local IPv6 address auto-configuration occurs even when only an IPv4 address is assigned. The only way to effectively prevent execution of the IPv6 networking stack is to instruct the system not to activate the IPv6 kernel module. |
contains 2 rules |
Disable IPv6 Networking Support Automatic LoadingruleTo prevent the IPv6 kernel module ( options ipv6 disable=1This permits the IPv6 module to be loaded (and thus satisfy other modules that depend on it), while disabling support for the IPv6 protocol. Rationale: Any unnecessary network stacks - including IPv6 - should be disabled, to reduce the vulnerability to exploitation. identifiers: CCE-27153-6, DISA FSO RHEL-06-000098 references: CM-7, 1551, Test attestation on 20121024 by DS
|
Disable Support for RPC IPv6ruleRPC services for NFSv4 try to load transport modules for
udp6 tpi_clts v inet6 udp - - tcp6 tpi_cots_ord v inet6 tcp - - identifiers: CCE-27232-8 references: CM-7
|
iptables and ip6tablesgroupA host-based firewall called |
contains 3 rules |
Inspect and Activate Default RulesgroupView the currently-enforced $ sudo iptables -nL --line-numbersThe command is analogous for ip6tables .
If the firewall does not appear to be active (i.e., no rules appear), activate it and ensure that it starts at boot by issuing the following commands (and analogously for ip6tables ):
$ sudo service iptables restartThe default iptables rules are: Chain INPUT (policy ACCEPT) num target prot opt source destination 1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 2 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 4 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22 5 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited Chain FORWARD (policy ACCEPT) num target prot opt source destination 1 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited Chain OUTPUT (policy ACCEPT) num target prot opt source destinationThe ip6tables default rules are essentially the same. |
contains 1 rule |
Verify iptables Enabledrule
The $ sudo chkconfig --level 2345 iptables onRationale:
The identifiers: CCE-27018-1, DISA FSO RHEL-06-000117 references: AC-4, CA-3(c), CM-7, 32, 66, 1115, 1118, 1092, 1117, 1098, 1100, 1097, 1414, Test attestation on 20121024 by DS
|
Strengthen the Default RulesetgroupThe default rules can be strengthened. The system
scripts that activate the firewall rules expect them to be defined
in the configuration files warning
The program system-config-securitylevel
allows additional services to penetrate the default firewall rules
and automatically adjusts /etc/sysconfig/iptables . This program
is only useful if the default ruleset meets your security
requirements. Otherwise, this program should not be used to make
changes to the firewall configuration because it re-writes the
saved configuration file. |
contains 2 rules |
Set Default iptables Policy for Incoming PacketsruleTo set the default policy to DROP (instead of ACCEPT) for
the built-in INPUT chain which processes incoming packets,
add or correct the following line in
:INPUT DROP [0:0]Rationale: In
|
Set Default iptables Policy for Forwarded PacketsruleTo set the default policy to DROP (instead of ACCEPT) for
the built-in FORWARD chain which processes packets that will be forwarded from
one interface to another,
add or correct the following line in
:FORWARD DROP [0:0]Rationale: In
|
Uncommon Network ProtocolsgroupThe system includes support for several network protocols which are not commonly used. Although security vulnerabilities in kernel networking code are not frequently discovered, the consequences can be dramatic. Ensuring uncommon network protocols are disabled reduces the system's risk to attacks targeted at its implementation of those protocols. warning
Although these protocols are not commonly used, avoid disruption
in your network environment by ensuring they are not needed
prior to disabling them.
|
contains 4 rules |
Disable DCCP Supportrule
The Datagram Congestion Control Protocol (DCCP) is a
relatively new transport layer protocol, designed to support
streaming media and telephony.
To configure the system to prevent the install dccp /bin/trueRationale: Disabling DCCP protects the system against exploitation of any flaws in its implementation. identifiers: CCE-26448-1, DISA FSO RHEL-06-000124 references: CM-7, 382, Test attestation on 20121024 by DS
|
Disable SCTP Supportrule
The Stream Control Transmission Protocol (SCTP) is a
transport layer protocol, designed to support the idea of
message-oriented communication, with several streams of messages
within one connection.
To configure the system to prevent the install sctp /bin/trueRationale: Disabling SCTP protects the system against exploitation of any flaws in its implementation. identifiers: CCE-26410-1, DISA FSO RHEL-06-000125 references: CM-7, 382, Test attestation on 20121024 by DS
|
Disable RDS Supportrule
The Reliable Datagram Sockets (RDS) protocol is a transport
layer protocol designed to provide reliable high- bandwidth,
low-latency communications between nodes in a cluster.
To configure the system to prevent the install rds /bin/trueRationale: Disabling RDS protects the system against exploitation of any flaws in its implementation. identifiers: CCE-26239-4, DISA FSO RHEL-06-000126 references: CM-7, 382, Test attestation on 20121024 by DS
|
Disable TIPC Supportrule
The Transparent Inter-Process Communication (TIPC) protocol
is designed to provide communications between nodes in a
cluster.
To configure the system to prevent the install tipc /bin/trueRationale: Disabling TIPC protects the system against exploitation of any flaws in its implementation. identifiers: CCE-26696-5, DISA FSO RHEL-06-000127 references: CM-7, 382, Test attestation on 20121024 by DS
|
Disable Zeroconf NetworkingruleZeroconf networking allows the system to assign itself an IP
address and engage in IP communication without a statically-assigned address or
even a DHCP server. Automatic address assignment via Zeroconf (or DHCP) is not
recommended. To disable Zeroconf automatic route assignment in the 169.254.0.0
subnet, add or correct the following line in NOZEROCONF=yesRationale: Zeroconf addresses are in the network 169.254.0.0. The networking scripts add entries to the system's routing table for these addresses. Zeroconf address assignment commonly occurs when the system is configured to use DHCP but fails to receive an address assignment from the DHCP server. identifiers: CCE-27151-0 references: CM-7
|
Ensure System is Not Acting as a Network SnifferruleThe system should not be acting as a network sniffer, which can capture all traffic on the network to which it is connected. Run the following to determine if any interface is running in promiscuous mode: $ ip link | grep PROMISCRationale: If any results are returned, then a sniffing process (such as tcpdump or Wireshark) is likely to be using the interface and this should be investigated. |
Configure SysloggroupThe syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
|
contains 7 rules |
Ensure Proper Configuration of Log Filesgroup
The file *.info;mail.none;authpriv.none;cron.none /var/log/messages authpriv.* /var/log/secure mail.* -/var/log/maillog cron.* /var/log/cron *.emerg * uucp,news.crit /var/log/spooler local7.* /var/log/boot.logSee the man page rsyslog.conf(5) for more information.
Note that the rsyslog daemon can be configured to use a timestamp format that
some log processing programs may not understand. If this occurs,
edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat |
contains 1 rule |
Ensure Log Files Are Owned By Appropriate GroupruleThe group-owner of all log files written by
$ ls -l LOGFILEIf the owner is not root , run the following command to
correct this:
$ sudo chgrp root LOGFILERationale: The log files generated by rsyslog contain valuable information regarding system configuration, user authentication, and other such information. Log files should be protected from unauthorized access. identifiers: CCE-26821-9, DISA FSO RHEL-06-000134 references: AC-6, SI-11, 1314, Test attestation on 20121024 by DS |
contains 3 rules |
Ensure rsyslog Does Not Accept Remote Messages Unless Acting As Log ServerruleThe $ModLoad imtcp $InputTCPServerRun port $ModLoad imudp $UDPServerRun port $ModLoad imrelp $InputRELPServerRun portRationale: Any process which receives messages from the network incurs some risk of receiving malicious messages. This risk can be eliminated for rsyslog by configuring it not to listen on the network. |
Enable rsyslog to Accept Messages via TCP, if Acting As Log ServerruleThe $ModLoad imtcp $InputTCPServerRun 514Rationale: If the system needs to act as a log server, this ensures that it can receive messages over a reliable TCP connection. identifiers: CCE-27235-1 references: AU-9 |
Ensure All Logs are Rotated by logrotategroupEdit the file /var/log/messages /var/log/secure /var/log/maillog /var/log/spooler \ /var/log/boot.log /var/log/cron {Edit this line so that it contains a one-space-separated listing of each log file referenced in /etc/rsyslog.conf .
All logs in use on a system must be rotated regularly, or the log files will consume disk space over time, eventually interfering with system operation. The file /etc/logrotate.d/syslog is the
configuration file used by the logrotate program to maintain all
log files written by syslog . By default, it rotates logs weekly and
stores four archival copies of each log. These settings can be
modified by editing /etc/logrotate.conf , but the defaults are
sufficient for purposes of this guide.
Note that logrotate is run nightly by the cron job
/etc/cron.daily/logrotate . If particularly active logs need to be
rotated more often than once a day, some other mechanism must be
used. |
contains 1 rule |
Ensure Logrotate Runs PeriodicallyruleThe # rotate log files frequency dailyRationale: Log files that are not properly rotated run the risk of growing so large that they fill up the /var/log partition. Valuable logging information could be lost if the /var/log partition becomes full. |
Ensure rsyslog is Installedrule
Rsyslog is installed by default.
The $ sudo yum install rsyslogRationale: The rsyslog package provides the rsyslog daemon, which provides system logging services. identifiers: CCE-26809-4 references: AU-9(2), 1311, 1312, Test attestation on 20121024 by DS
|
Enable rsyslog ServiceruleThe $ sudo chkconfig --level 2345 rsyslog onRationale: The identifiers: CCE-26807-8 references: AU-12, 1557, 1312, 1311, Test attestation on 20121024 by DS
|
System Accounting with auditdgroupThe audit service provides substantial capabilities
for recording system activities. By default, the service audits about
SELinux AVC denials and certain types of security-relevant events
such as system logins, account modifications, and authentication
events performed by programs such as sudo.
Under its default configuration, type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd" path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13 a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd" exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
|
contains 38 rules |
Configure auditd Data Retentiongroup
The audit system writes data to |
contains 7 rules |
Configure auditd Number of Logs RetainedruleDetermine how many log files
num_logs = NUMLOGSSet the value to 5 for general-purpose systems. Note that values less than 2 result in no log rotation.Rationale: The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained. identifiers: CCE-27522-2, DISA FSO RHEL-06-000159 references: AU-1(b), AU-11, IR-5, Test attestation on 20121024 by DS
|
Configure auditd Max Log File SizeruleDetermine the amount of audit data (in megabytes)
which should be retained in each log file. Edit the file
max_log_file = STOREMBSet the value to 6 (MB) or higher for general-purpose systems.
Larger values, of course,
support retention of even more audit data.Rationale:The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained. identifiers: CCE-27550-3, DISA FSO RHEL-06-000160 references: AU-1(b), AU-11, IR-5, Test attestation on 20121024 by DS
|
Configure auditd max_log_file_action Upon Reaching Maximum Log Sizerule The default action to take when the logs reach their maximum size
is to rotate the log files, discarding the oldest one. To configure the action taken
by max_log_file_action = ACTIONPossible values for ACTION are described in the auditd.conf man
page. These include:
ACTION to rotate to ensure log rotation
occurs. This is the default. The setting is case-insensitive.
Rationale:Automatically rotating logs (by setting this to identifiers: CCE-27237-7, DISA FSO RHEL-06-000161 references: AU-1(b), AU-4, AU-11, IR-5, Test attestation on 20121024 by DS
|
Configure auditd space_left Action on Low Disk SpaceruleThe space_left_action = ACTIONPossible values for ACTION are described in the auditd.conf man page.
These include:
email (instead of the default,
which is suspend ) as it is more likely to get prompt attention. Acceptable values
also include suspend , single , and halt .
Rationale:Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption. identifiers: CCE-27238-5, DISA FSO RHEL-06-000005 references: AU-1(b), AU-4, AU-5(b), IR-5, 140, 143, Test attestation on 20121024 by DS
|
Configure auditd admin_space_left Action on Low Disk SpaceruleThe admin_space_left_action = ACTIONSet this value to single to cause the system to switch to single-user
mode for corrective action. Acceptable values also include suspend and
halt . For certain systems, the need for availability
outweighs the need to log all actions, and a different setting should be
determined. Details regarding all possible values for ACTION are described in the
auditd.conf man page.
Rationale:Administrators should be made aware of an inability to record audit records. If a separate partition or logical volume of adequate size is used, running low on space for audit records should never occur. identifiers: CCE-27239-3 references: AU-1(b), AU-4, AU-5(b), IR-5, 140, 1343, Test attestation on 20121024 by DS
|
Configure auditd mail_acct Action on Low Disk SpaceruleThe action_mail_acct = rootRationale: Email sent to the root account is typically aliased to the administrators of the system, who can take appropriate action. Remediation script:
|
Configure auditd to use audispd's syslog pluginruleTo configure the $ sudo service auditd restartRationale: The auditd service does not include the ability to send audit records to a centralized server for management directly. It does, however, include a plug-in for audit event multiplexor (audispd) to pass audit records to the local syslog server Remediation script:
|
Configure auditd Rules for Comprehensive AuditinggroupThe
Auditing rules at startup are controlled by the file /etc/audit/audit.rules .
Add rules to it to meet the auditing requirements for your organization.
Each line in /etc/audit/audit.rules represents a series of arguments
that can be passed to auditctl and can be individually tested
during runtime. See documentation in /usr/share/doc/audit-VERSION and
in the related man pages for more details.
If copying any example audit rulesets from /usr/share/doc/audit-VERSION ,
be sure to comment out the
lines containing arch= which are not appropriate for your system's
architecture. Then review and understand the following rules,
ensuring rules are activated as needed for the appropriate
architecture.
After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows: $ sudo service auditd restart |
contains 29 rules |
Records Events that Modify Date and Time InformationgroupArbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time. All changes to the system time should be audited. |
contains 5 rules |
Record attempts to alter time through adjtimexruleOn a 32-bit system, add the following to # audit_time_rules -a always,exit -F arch=b32 -S adjtimex -k audit_time_rulesOn a 64-bit system, add the following to /etc/audit/audit.rules :
# audit_time_rules -a always,exit -F arch=b64 -S adjtimex -k audit_time_rulesThe -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls: -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rulesRationale: Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited. identifiers: CCE-26242-8, DISA FSO RHEL-06-000165 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 1487, 169
|
Record attempts to alter time through settimeofdayruleOn a 32-bit system, add the following to # audit_time_rules -a always,exit -F arch=b32 -S settimeofday -k audit_time_rulesOn a 64-bit system, add the following to /etc/audit/audit.rules :
# audit_time_rules -a always,exit -F arch=b64 -S settimeofday -k audit_time_rulesThe -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls: -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rulesRationale: Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited. |
Record Attempts to Alter Time Through stimeruleAdd the following line to # audit_time_rules -a always,exit -F arch=b32 -S stime -k audit_time_rulesSince the 64-bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64-bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32-bit and 64-bit systems). The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls: -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rulesRationale: Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited. |
Record Attempts to Alter Time Through clock_settimeruleOn a 32-bit system, add the following to # time-change -a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-changeOn a 64-bit system, add the following to /etc/audit/audit.rules :
# time-change -a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-changeThe -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls: -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rulesRationale: Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited. identifiers: CCE-27170-0, DISA FSO RHEL-06-000171 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 1487, 169
|
Record Attempts to Alter the localtime FileruleAdd the following to -w /etc/localtime -p wa -k audit_time_rulesThe -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used. Rationale: Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited. identifiers: CCE-27172-6, DISA FSO RHEL-06-000173 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 1487, 169
|
Record Events that Modify the System's Discretionary Access ControlsgroupAt a minimum, the audit system should collect file permission
changes for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to -a always,exit -F arch=b32 -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod -a always,exit -F arch=b32 -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod -a always,exit -F arch=b32 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_modIf your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows: -a always,exit -F arch=b64 -S chmod -S fchmod -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod -a always,exit -F arch=b64 -S chown -S fchown -S fchownat -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod -a always,exit -F arch=b64 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod |
contains 13 rules |
Record Events that Modify the System's Discretionary Access Controls - chmodruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S chmod -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S chmod -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-26280-8, DISA FSO RHEL-06-000184 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - chownruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S chown -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S chown -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27173-4, DISA FSO RHEL-06-000185 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fchmodruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fchmod -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fchmod -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27174-2, DISA FSO RHEL-06-000186 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fchmodatruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fchmodat -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27175-9, DISA FSO RHEL-06-000187 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fchownruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fchown -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fchown -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27177-5, DISA FSO RHEL-06-000188 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fchownatruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fchownat -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fchownat -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27178-3, DISA FSO RHEL-06-000189 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fremovexattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27179-1, DISA FSO RHEL-06-000190 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - fsetxattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S fsetxattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S fsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27180-9, DISA FSO RHEL-06-000191 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - lchownruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S lchown -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S lchown -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27181-7, DISA FSO RHEL-06-000192 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - lremovexattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S lremovexattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S lremovexattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27182-5, DISA FSO RHEL-06-000193 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - lsetxattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S lsetxattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S lsetxattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27183-3, DISA FSO RHEL-06-000194 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - removexattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S removexattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S removexattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27184-1, DISA FSO RHEL-06-000195 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify the System's Discretionary Access Controls - setxattrruleAt a minimum the audit system should collect file
permission changes for all users and root. Add the following to
-a always,exit -F arch=b32 -S setxattr -F auid>=500 -F auid!=4294967295 -k perm_modIf the system is 64 bit then also add the following: -a always,exit -F arch=b64 -S setxattr -F auid>=500 -F auid!=4294967295 -k perm_mod warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users. identifiers: CCE-27185-8, DISA FSO RHEL-06-000196 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Record Events that Modify User/Group InformationruleAdd the following to # audit_rules_usergroup_modification -w /etc/group -p wa -k audit_rules_usergroup_modification -w /etc/passwd -p wa -k audit_rules_usergroup_modification -w /etc/gshadow -p wa -k audit_rules_usergroup_modification -w /etc/shadow -p wa -k audit_rules_usergroup_modification -w /etc/security/opasswd -p wa -k audit_rules_usergroup_modificationRationale: In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy. identifiers: CCE-26664-3, DISA FSO RHEL-06-000174 references: AC-2(4), AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 18, 1403, 1404, 1405, 1684, 1683, 1685, 1686
|
Record Events that Modify the System's Network EnvironmentruleAdd the following to # audit_rules_networkconfig_modification -a always,exit -F arch=ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification -w /etc/issue -p wa -k audit_rules_networkconfig_modification -w /etc/issue.net -p wa -k audit_rules_networkconfig_modification -w /etc/hosts -p wa -k audit_rules_networkconfig_modification -w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modificationRationale: The network environment should not be modified by anything other than administrator action. Any change to network parameters should be audited. identifiers: CCE-26648-6, DISA FSO RHEL-06-000182 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5
|
System Audit Logs Must Have Mode 0640 or Less Permissiverule
If $ sudo chmod 0640 audit_file Otherwise, change the mode of the audit log files with the following command: $ sudo chmod 0600 audit_fileRationale: If users can write to audit logs, audit trails can be modified or destroyed. identifiers: CCE-27243-5, DISA FSO RHEL-06-000383 references: AC-6, AU-1(b), AU-9, IR-5, 166, Test attestation on 20121024 by DS
|
System Audit Logs Must Be Owned By Rootrule
To properly set the owner of $ sudo chown root /var/logRationale: Failure to give ownership of the audit log files to root allows the designated owner, and unauthorized users, potential access to sensitive information. identifiers: CCE-27244-3, DISA FSO RHEL-06-000384 references: AC-6, AU-1(b), AU-9, IR-5, 166, Test attestation on 20121024 by DS
|
Record Events that Modify the System's Mandatory Access ControlsruleAdd the following to -w /etc/selinux/ -p wa -k MAC-policyRationale: The system's mandatory access policy (SELinux) should not be arbitrarily changed by anything other than administrator action. All changes to MAC policy should be audited. identifiers: CCE-26657-7, DISA FSO RHEL-06-000183 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5
|
Record Attempts to Alter Login and Logout Eventsrule
The audit system already collects login info for all users and root. To watch for attempted manual edits of
files involved in storing login events, add the following to -w /var/log/tallylog -p wa -k logins -w /var/run/faillock/ -p wa -k logins -w /var/log/lastlog -p wa -k loginsRationale: Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. Remediation script:
|
Record Attempts to Alter Process and Session Initiation Informationrule The audit system already collects process information for all
users and root. To watch for attempted manual edits of files involved in
storing such process information, add the following to
-w /var/run/utmp -p wa -k session -w /var/log/btmp -p wa -k session -w /var/log/wtmp -p wa -k sessionRationale: Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion. identifiers: CCE-26610-6 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5
|
Ensure auditd Collects Information on Exporting to Media (successful)ruleAt a minimum the audit system should collect media
exportation events for all users and root. Add the following to
-a always,exit -F arch=ARCH -S mount -F auid>=500 -F auid!=4294967295 -k exportRationale: The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss. identifiers: CCE-26573-6, DISA FSO RHEL-06-000199 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Test attestation on 20121024 by DS
|
Ensure auditd Collects System Administrator ActionsruleAt a minimum the audit system should collect
administrator actions for all users and root. Add the following to
-w /etc/sudoers -p wa -k actionsRationale: The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes. identifiers: CCE-26662-7, DISA FSO RHEL-06-000201 references: AC-2(7)(b), AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Test attestation on 20121024 by DS
|
Ensure auditd Collects Information on Kernel Module Loading and UnloadingruleAdd the following to -w /sbin/insmod -p x -k modules -w /sbin/rmmod -p x -k modules -w /sbin/modprobe -p x -k modules -a always,exit -F arch=ARCH -S init_module -S delete_module -k modulesRationale: The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel. identifiers: CCE-26611-4, DISA FSO RHEL-06-000202 references: AC-3(10), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126
|
Make the auditd Configuration ImmutableruleAdd the following to -e 2With this setting, a reboot will be required to change any audit rules.Rationale: Making the audit configuration immutable prevents accidental as well as malicious modification of the audit rules, although it may be problematic if legitimate changes are needed during system operation Remediation script:
|
Enable auditd ServiceruleThe $ sudo chkconfig --level 2345 auditd onRationale: Ensuring the identifiers: CCE-27058-7, DISA FSO RHEL-06-000145 references: AC-17(1), AU-1(b), AU-10, AU-12(a), AU-12(c), IR-5, 347, 157, 172, 880, 1353, 1462, 1487, 1115, 1454, 067, 158, 831, 1190, 1312, 1263, 130, 120, 1589, Test attestation on 20121024 by DS
|
Enable Auditing for Processes Which Start Prior to the Audit DaemonruleTo ensure all processes can be audited, even
those which start prior to the audit daemon, add the argument
kernel /vmlinuz-version ro vga=ext root=/dev/VolGroup00/LogVol00 rhgb quiet audit=1Rationale:
Each process on the system carries an "auditable" flag which
indicates whether its activities can be audited. Although identifiers: CCE-26785-6, DISA FSO RHEL-06-000525 references: AC-17(1), AU-14(1), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-10, IR-5, 1464, 130
|
Servicesgroup
The best protection against vulnerable software is running less software. This section describes how to review
the software which Red Hat Enterprise Linux 6 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default Red Hat Enterprise Linux 6 system and provides guidance about which
ones can be safely disabled.
|
contains 62 rules |
Obsolete ServicesgroupThis section discusses a number of network-visible
services which have historically caused problems for system
security, and for which disabling or severely limiting the service
has been the best available guidance for some time. As a result of
this, many of these services are not installed as part of Red Hat Enterprise Linux 6
by default.
|
contains 9 rules |
Rlogin, Rsh, and RexecgroupThe Berkeley r-commands are legacy services which allow cleartext remote access and have an insecure trust model. |
contains 4 rules |
Uninstall rsh-server PackageruleThe $ sudo yum erase rsh-serverRationale: The identifiers: CCE-27062-9, DISA FSO RHEL-06-000213 references: CM-7, 305, 381, Test attestation on 20121026 by DS
|
Disable rexec ServiceruleThe $ sudo chkconfig rexec offRationale: The rexec service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network. identifiers: CCE-27208-8, DISA FSO RHEL-06-000216 references: CM-7, 68, 1436, Test attestation on 20121026 by DS |
Disable rsh ServiceruleThe $ sudo chkconfig rsh offRationale: The rsh service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network. identifiers: CCE-26994-4, DISA FSO RHEL-06-000214 references: CM-7, IA-5(1)(c), 68, 1436, Test attestation on 20121026 by DS |
Disable rlogin ServiceruleThe $ sudo chkconfig rlogin offRationale: The rlogin service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network. identifiers: CCE-26865-6, DISA FSO RHEL-06-000218 references: CM-7, IA-5(1)(c), 1436, Test attestation on 20121026 by DS |
NISgroupThe Network Information Service (NIS), also known as 'Yellow Pages' (YP), and its successor NIS+ have been made obsolete by Kerberos, LDAP, and other modern centralized authentication services. NIS should not be used because it suffers from security problems inherent in its design, such as inadequate protection of important authentication information. |
contains 2 rules |
Uninstall ypserv PackageruleThe $ sudo yum erase ypservRationale: Removing the identifiers: CCE-27079-3, DISA FSO RHEL-06-000220 references: CM-7, 305, 381, Test attestation on 20121026 by DS
|
Disable ypbind ServiceruleThe $ sudo chkconfig ypbind offRationale:
Disabling the identifiers: CCE-26894-6, DISA FSO RHEL-06-000221 references: CM-7, 305, Test attestation on 20121026 by DS
|
TFTP ServergroupTFTP is a lightweight version of the FTP protocol which has traditionally been used to configure networking equipment. However, TFTP provides little security, and modern versions of networking operating systems frequently support configuration via SSH or other more secure protocols. A TFTP server should be run only if no more secure method of supporting existing equipment can be found. |
contains 3 rules |
Disable tftp ServiceruleThe $ sudo chkconfig tftp offRationale:
Disabling the identifiers: CCE-27055-3, DISA FSO RHEL-06-000223 references: CM-7, 1436, Test attestation on 20121026 by DS
|
Uninstall tftp-server Packagerule
The $ sudo yum erase tftp-serverRationale:
Removing the identifiers: CCE-26946-4, DISA FSO RHEL-06-000222 references: CM-7, 305, Test attestation on 20121026 by DS |
Ensure tftp Daemon Uses Secure ModeruleIf running the server_args = -s /var/lib/tftpbootRationale: Using the |
Base ServicesgroupThis section addresses the base services that are installed on a Red Hat Enterprise Linux 6 default installation which are not covered in other sections. Some of these services listen on the network and should be treated with particular discretion. Other services are local system utilities that may or may not be extraneous. In general, system services should be disabled if not required. |
contains 21 rules |
Disable Automatic Bug Reporting Tool (abrtd)ruleThe Automatic Bug Reporting Tool ( $ sudo chkconfig abrtd offRationale: Mishandling crash data could expose sensitive information about vulnerabilities in software executing on the local machine, as well as sensitive information from within a process's address space or registers. Remediation script:
|
Disable Advanced Configuration and Power Interface (acpid)ruleThe Advanced Configuration and Power Interface Daemon ( $ sudo chkconfig acpid offRationale: ACPI support is highly desirable for systems in some network roles, such as laptops or desktops. For other systems, such as servers, it may permit accidental or trivially achievable denial of service situations and disabling it is appropriate. identifiers: CCE-27061-1 references: CM-7
|
Disable Certmonger Service (certmonger)ruleCertmonger is a D-Bus based service that attempts to simplify interaction
with certifying authorities on networks which use public-key infrastructure. It is often
combined with Red Hat's IPA (Identity Policy Audit) security information management
solution to aid in the management of certificates.
The $ sudo chkconfig certmonger offRationale: The services provided by certmonger may be essential for systems fulfilling some roles a PKI infrastructure, but its functionality is not necessary for many other use cases. identifiers: CCE-27267-4 references: CM-7
|
Disable Control Group Config (cgconfig)ruleControl groups allow an administrator to allocate system resources (such as CPU,
memory, network bandwidth, etc) among a defined group (or groups) of processes executing on
a system. The $ sudo chkconfig cgconfig offRationale: Unless control groups are used to manage system resources, running the cgconfig service is not necessary. identifiers: CCE-27250-0 references: CM-7
|
Disable CPU Speed (cpuspeed)ruleThe $ sudo chkconfig cpuspeed offRationale: The identifiers: CCE-26973-8 references: CM-7
|
Disable Hardware Abstraction Layer Service (haldaemon)ruleThe Hardware Abstraction Layer Daemon ( $ sudo chkconfig haldaemon offRationale: The haldaemon provides essential functionality on systems that use removable media or devices, but can be disabled for systems that do not require these. identifiers: CCE-27086-8 references: CM-7
|
Disable Software RAID Monitor (mdmonitor)ruleThe $ sudo chkconfig mdmonitor offRationale: If software RAID monitoring is not required, there is no need to run this service. identifiers: CCE-27193-2 references: CM-7
|
Disable Network Console (netconsole)ruleThe $ sudo chkconfig netconsole offRationale: The
|
Disable ntpdate Service (ntpdate)ruleThe $ sudo chkconfig ntpdate offRationale: The identifiers: CCE-27256-7, DISA FSO RHEL-06-000265 references: CM-7, 382, Test attestation on 20121024 by DS |
Disable Odd Job Daemon (oddjobd)ruleThe $ sudo chkconfig oddjobd offRationale: The identifiers: CCE-27257-5, DISA FSO RHEL-06-000266 references: CM-7, 381, Test attestation on 20121024 by DS
|
Disable Portreserve (portreserve)ruleThe $ sudo chkconfig portreserve offRationale: The identifiers: CCE-27258-3 references: CM-7, Test attestation on 20121024 by DS
|
Enable Process Accounting (psacct)ruleThe process accounting service, $ sudo chkconfig --level 2345 psacct onRationale: The identifiers: CCE-27259-1 references: AU-12, CM-7, Test attestation on 20121024 by DS
|
Disable Apache Qpid (qpidd)ruleThe $ sudo chkconfig qpidd offRationale: The qpidd service is automatically installed when the "base"
package selection is selected during installation. The qpidd service listens
for network connections, which increases the attack surface of the system. If
the system is not intended to receive AMQP traffic, then the
|
Disable Quota Netlink (quota_nld)ruleThe $ sudo chkconfig quota_nld offRationale: If disk quotas are enforced on the local system, then the
identifiers: CCE-27260-9 references: CM-7, Test attestation on 20121024 by DS
|
Disable Network Router Discovery Daemon (rdisc)ruleThe $ sudo chkconfig rdisc offRationale: General-purpose systems typically have their network and routing information configured statically by a system administrator. Workstations or some special-purpose systems often use DHCP (instead of IRDP) to retrieve dynamic network configuration information. identifiers: CCE-27261-7, DISA FSO RHEL-06-000268 references: AC-4, CM-7, 382, Test attestation on 20121024 by DS
|
Disable Red Hat Network Service (rhnsd)ruleThe Red Hat Network service automatically queries Red Hat Network
servers to determine whether there are any actions that should be executed,
such as package updates. This only occurs if the system was registered to an
RHN server or satellite and managed as such.
The $ sudo chkconfig rhnsd offRationale: Although systems management and patching is extremely important to
system security, management by a system outside the enterprise enclave is not
desirable for some environments. However, if the system is being managed by RHN or
RHN Satellite Server the identifiers: CCE-26846-6, DISA FSO RHEL-06-000009 references: CM-7, 382, Test attestation on 20121024 by DS
|
Disable Red Hat Subscription Manager Daemon (rhsmcertd)ruleThe Red Hat Subscription Manager (rhsmcertd) periodically checks for
changes in the entitlement certificates for a registered system and updates it
accordingly.
The $ sudo chkconfig rhsmcertd offRationale: The identifiers: CCE-27262-5 references: CM-7, Test attestation on 20121024 by DS
|
Disable Cyrus SASL Authentication Daemon (saslauthd)ruleThe $ sudo chkconfig saslauthd offRationale: The identifiers: CCE-27263-3 references: CM-7, Test attestation on 20121024 by DS
|
Disable SMART Disk Monitoring Service (smartd)ruleSMART (Self-Monitoring, Analysis, and Reporting Technology) is a
feature of hard drives that allows them to detect symptoms of disk failure and
relay an appropriate warning.
The $ sudo chkconfig smartd offRationale: SMART can help protect against denial of service due to failing hardware. Nevertheless, if it is not needed or the system's drives are not SMART-capable (such as solid state drives), it can be disabled. identifiers: CCE-26853-2 references: CM-7, Test attestation on 20121024 by DS
|
Disable System Statistics Reset Service (sysstat)ruleThe $ sudo chkconfig sysstat offRationale: By default the identifiers: CCE-27265-8 references: CM-7, Test attestation on 20121024 by DS
|
Cron and At DaemonsgroupThe cron and at services are used to allow commands to be executed at a later time. The cron service is required by almost all systems to perform necessary maintenance tasks, while at may or may not be required on a given system. Both daemons should be configured defensively. |
contains 3 rules |
Enable cron ServiceruleThe $ sudo chkconfig --level 2345 crond onRationale: Due to its usage for maintenance and security-supporting tasks, enabling the cron daemon is essential. identifiers: CCE-27070-2, DISA FSO RHEL-06-000224 references: CM-7, Test attestation on 20121024 by DS
|
Disable anacron ServiceruleThe $ sudo yum erase cronie-anacronRationale:
The identifiers: CCE-27158-5 references: CM-7 |
Disable At Service (atd)ruleThe $ sudo chkconfig atd offRationale:
The
|
SSH ServergroupThe SSH protocol is recommended for remote login and
remote file transfer. SSH provides confidentiality and integrity
for data exchanged between two systems, as well as server
authentication, through the use of public key cryptography. The
implementation included with the system is called OpenSSH, and more
detailed documentation is available from its website,
http://www.openssh.org. Its server program is called |
contains 3 rules |
Configure OpenSSH Server if NecessarygroupIf the system needs to act as an SSH server, then
certain changes should be made to the OpenSSH daemon configuration
file |
contains 3 rules |
Allow Only SSH Protocol 2ruleOnly SSH protocol version 2 connections should be
permitted. The default setting in
Protocol 2Rationale: SSH protocol version 1 suffers from design flaws that result in security vulnerabilities and should not be used. identifiers: CCE-27072-8, DISA FSO RHEL-06-000227 references: AC-3(10), IA-5(1)(c), 776, 774, 1436, Test attestation on 20121024 by DS
|
Disable SSH Root LoginruleThe root user should never be allowed to login to a
system directly over a network.
To disable root login via SSH, add or correct the following line
in PermitRootLogin noRationale: Permitting direct root login reduces auditable information about who ran privileged commands on the system and also allows direct attack attempts on root's password. identifiers: CCE-27100-7, DISA FSO RHEL-06-000237 references: AC-3, AC-6(2), IA-2(1), 770, Test attestation on 20121024 by DS
|
Use Only Approved CiphersruleLimit the ciphers to those algorithms which are FIPS-approved.
Counter (CTR) mode is also preferred over cipher-block chaining (CBC) mode.
The following line in Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbcThe man page sshd_config(5) contains a list of supported ciphers.
Rationale:Approved algorithms should impart some level of confidence in their implementation. These are also required for compliance. identifiers: CCE-26555-3, DISA FSO RHEL-06-000243 references: AC-3, AC-17(2), SI-7, IA-5(1)(c), IA-7, 803, 1144, 1145, 1146, Test attestation on 20121024 by DS
|
X Window SystemgroupThe X Window System implementation included with the system is called X.org. |
contains 1 rule |
Disable X WindowsgroupUnless there is a mission-critical reason for the system to run a graphical user interface, ensure X is not set to start automatically at boot and remove the X Windows software packages. There is usually no reason to run X Windows on a dedicated server machine, as it increases the system's attack surface and consumes system resources. Administrators of server systems should instead login via SSH or on the text console. |
contains 1 rule |
Disable X Windows Startup By Setting RunlevelruleSetting the system's runlevel to 3 will prevent automatic startup
of the X server. To do so, ensure the following line in id:3:initdefault:Rationale: Unnecessary services should be disabled to decrease the attack surface of the system. identifiers: CCE-27119-7, DISA FSO RHEL-06-000290 references: AC-3, 366, Test attestation on 20121025 by DS |
Avahi ServergroupThe Avahi daemon implements the DNS Service Discovery and Multicast DNS protocols, which provide service and host discovery on a network. It allows a system to automatically identify resources on the network, such as printers or web servers. This capability is also known as mDNSresponder and is a major part of Zeroconf networking. |
contains 1 rule |
Disable Avahi Server if PossiblegroupBecause the Avahi daemon service keeps an open network port, it is subject to network attacks. Disabling it can reduce the system's vulnerability to such attacks. |
contains 1 rule |
Disable Avahi Server Softwarerule
The $ sudo chkconfig avahi-daemon offRationale: Because the Avahi daemon service keeps an open network port, it is subject to network attacks. Its functionality is convenient but is only appropriate if the local network can be trusted. Remediation script:
|
Print SupportgroupThe Common Unix Printing System (CUPS) service provides both local
and network printing support. A system running the CUPS service can accept
print jobs from other systems, process them, and send them to the appropriate
printer. It also provides an interface for remote administration through a web
browser. The CUPS service is installed and activated by default. The project
homepage and more detailed documentation are available at http://www.cups.org.
|
contains 2 rules |
Configure the CUPS Service if NecessarygroupCUPS provides the ability to easily share local printers with other machines over the network. It does this by allowing machines to share lists of available printers. Additionally, each machine that runs the CUPS service can potentially act as a print server. Whenever possible, the printer sharing and print server capabilities of CUPS should be limited or disabled. The following recommendations should demonstrate how to do just that. |
contains 1 rule |
Disable Print Server CapabilitiesruleTo prevent remote users from potentially connecting to and using locally configured printers, disable the CUPS print server sharing capabilities. To do so, limit how the server will listen for print jobs by removing the more generic port directive from /etc/cups/cupsd.conf: Port 631and replacing it with the Listen directive:
Listen localhost:631This will prevent remote users from printing to locally configured printers while still allowing local users on the machine to print normally. Rationale: By default, locally configured printers will not be shared over the network, but if this functionality has somehow been enabled, these recommendations will disable it again. Be sure to disable outgoing printer list broadcasts, or remote users will still be able to see the locally configured printers, even if they cannot actually print to them. To limit print serving to a particular set of users, use the Policy directive. identifiers: CCE-27107-2 references: CM-7 |
Disable the CUPS Servicerule
The $ sudo chkconfig cups offRationale: Turn off unneeded services to reduce attack surface. identifiers: CCE-26899-5 references: CM-7
|
DHCPgroupThe Dynamic Host Configuration Protocol (DHCP) allows
systems to request and obtain an IP address and other configuration
parameters from a server.
|
contains 6 rules |
Disable DHCP Servergroup
The DHCP server |
contains 2 rules |
Disable DHCP ServiceruleThe $ sudo chkconfig dhcpd offRationale: Unmanaged or unintentionally activated DHCP servers may provide faulty information to clients, interfering with the operation of a legitimate site DHCP server if there is one. identifiers: CCE-27074-4 references: CM-7, 366, Test attestation on 20121024 by DS
|
Uninstall DHCP Server PackageruleIf the system does not need to act as a DHCP server,
the dhcp package can be uninstalled.
The $ sudo yum erase dhcpRationale: Removing the DHCP server ensures that it cannot be easily or accidentally reactivated and disrupt network operation. identifiers: CCE-27120-5 references: CM-7, 366, Test attestation on 20121024 by DS |
Disable DHCP ServergroupIf the system must act as a DHCP server, the configuration
information it serves should be minimized. Also, support for other protocols
and DNS-updating schemes should be explicitly disabled unless needed. The
configuration file for dhcpd is called |
contains 3 rules |
Do Not Use Dynamic DNSruleTo prevent the DHCP server from receiving DNS information from
clients, edit ddns-update-style none; warning
The ddns-update-style option controls only whether
the DHCP server will attempt to act as a Dynamic DNS client. As long as the DNS
server itself is correctly configured to reject DDNS attempts, an incorrect
ddns-update-style setting on the client is harmless (but should be fixed as a
best practice). The Dynamic DNS protocol is used to remotely update the data served by a DNS server. DHCP servers can use Dynamic DNS to publish information about their clients. This setup carries security risks, and its use is not recommended. If Dynamic DNS must be used despite the risks it poses, it is critical that Dynamic DNS transactions be protected using TSIG or some other cryptographic authentication mechanism. See dhcpd.conf(5) for more information about protecting the DHCP server from passing along malicious DNS data from its clients. identifiers: CCE-27049-6 references: CM-7 |
Deny Decline MessagesruleEdit deny declines;Rationale: The DHCPDECLINE message can be sent by a DHCP client to indicate that it does not consider the lease offered by the server to be valid. By issuing many DHCPDECLINE messages, a malicious client can exhaust the DHCP server's pool of IP addresses, causing the DHCP server to forget old address allocations. identifiers: CCE-27106-4 references: CM-7 |
Deny BOOTP QueriesruleUnless your network needs to support older BOOTP clients, disable support for the bootp protocol by adding or correcting the global option: deny bootp;Rationale: The bootp option tells dhcpd to respond to BOOTP queries. If support for this simpler protocol is not needed, it should be disabled to remove attack vectors against the DHCP server. identifiers: CCE-27077-7 references: CM-7 |
Disable DHCP ClientgroupDHCP is the default network configuration method provided by the system installer, and common on many networks. Nevertheless, manual management of IP addresses for systems implies a greater degree of management and accountability for network activity. |
contains 1 rule |
Disable DHCP Clientrule
For each interface on the system (e.g. eth0), edit
DHCP relies on trusting the local network. If the local network is not trusted, then it should not be used. However, the automatic configuration provided by DHCP is commonly used and the alternative, manual configuration, presents an unacceptable burden in many circumstances. identifiers: CCE-27021-5, DISA FSO RHEL-06-000292 references: CM-7, 366, Test attestation on 20121024 by DS |
Network Time ProtocolgroupThe Network Time Protocol is used to manage the system
clock over a network. Computer clocks are not very accurate, so
time will drift unpredictably on unmanaged systems. Central time
protocols can be used both to ensure that time is consistent among
a network of machines, and that their time is consistent with the
outside world.
|
contains 3 rules |
Enable the NTP Daemonrule
The $ sudo chkconfig --level 2345 ntpd onRationale: Enabling the identifiers: CCE-27093-4, DISA FSO RHEL-06-000247 references: AU-8(1), 160, Test attestation on 20121024 by DS
|
Specify a Remote NTP ServerruleTo specify a remote NTP server for time synchronization, edit
the file server ntpserverThis instructs the NTP software to contact that remote server to obtain time data. Rationale: Synchronizing with an NTP server makes it possible to collate system logs from multiple sources or correlate computer events with real time events. identifiers: CCE-27098-3, DISA FSO RHEL-06-000248 references: AU-8(1), 160, Test attestation on 20121024 by DS |
Specify Additional Remote NTP ServersruleAdditional NTP servers can be specified for time synchronization
in the file server ntpserverRationale: Specifying additional NTP servers increases the availability of accurate time data, in the event that one of the specified servers becomes unavailable. This is typical for a system acting as an NTP server for other systems. identifiers: CCE-26958-9 references: AU-8(1) |
Mail Server Softwaregroup
Mail servers are used to send and receive email over the network.
Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious
targets of network attack.
Ensure that machines are not running MTAs unnecessarily,
and configure needed MTAs as defensively as possible.
|
contains 2 rules |
Configure SMTP For Mail ClientsgroupThis section discusses settings for Postfix in a submission-only e-mail configuration. |
contains 1 rule |
Disable Postfix Network Listeningrule
Edit the file inet_interfaces = localhostRationale:
This ensures identifiers: CCE-26780-7, DISA FSO RHEL-06-000249 references: CM-7, 382, Test attestation on 20121024 by DS |
Uninstall Sendmail PackageruleSendmail is not the default mail transfer agent and is
not installed by default.
The $ sudo yum erase sendmailRationale: The sendmail software was not developed with security in mind and its design prevents it from being effectively contained by SELinux. Postfix should be used instead. identifiers: CCE-27515-6, DISA FSO RHEL-06-000288 references: CM-7, Test attestation on 20121024 by DS |
LDAPgroupLDAP is a popular directory service, that is, a standardized way of looking up information from a central database. Red Hat Enterprise Linux 6 includes software that enables a system to act as both an LDAP client and server. |
contains 3 rules |
Configure OpenLDAP ClientsgroupThis section provides information on which security settings are
important to configure in OpenLDAP clients by manually editing the appropriate
configuration files. Red Hat Enterprise Linux 6 provides an automated configuration tool called
authconfig and a graphical wrapper for authconfig called
warning
Before configuring any system to be an
LDAP client, ensure that a working LDAP server is present on the
network. |
contains 2 rules |
Configure LDAP Client to Use TLS For All TransactionsruleConfigure LDAP to enforce TLS use. First, edit the file
ssl start_tlsThen review the LDAP server and ensure TLS has been configured. Rationale: The ssl directive specifies whether to use ssl or not. If not specified it will default to no. It should be set to start_tls rather than doing LDAP over SSL. identifiers: CCE-26690-8, DISA FSO RHEL-06-000252 references: CM-7, 776, 778, 1453, Test attestation on 20121024 by DS |
Configure Certificate Directives for LDAP Use of TLSruleEnsure a copy of a trusted CA certificate has been placed in
the file tls_cacertdir /etc/pki/tls/CAor tls_cacertfile /etc/pki/tls/CA/cacert.pemThen review the LDAP server and ensure TLS has been configured. Rationale: The tls_cacertdir or tls_cacertfile directives are required when tls_checkpeer is configured (which is the default for openldap versions 2.1 and up). These directives define the path to the trust certificates signed by the site CA. identifiers: CCE-27189-0, DISA FSO RHEL-06-000253 references: CM-7, 776, 778, 1453, Test attestation on 20121024 by DS |
Configure OpenLDAP ServergroupThis section details some security-relevant settings for an OpenLDAP server. Installation and configuration of OpenLDAP on Red Hat Enterprise Linux 6 is available at: https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Directory_Servers.html. |
contains 1 rule |
Uninstall openldap-servers PackageruleThe $ sudo yum erase openldap-serversThe openldap-servers RPM is not installed by default on Red Hat Enterprise Linux 6 machines. It is needed only by the OpenLDAP server, not by the clients which use LDAP for authentication. If the system is not intended for use as an LDAP Server it should be removed. Rationale: Unnecessary packages should not be installed to decrease the attack surface of the system. While this software is clearly essential on an LDAP server, it is not necessary on typical desktop or workstation systems. identifiers: CCE-26858-1, DISA FSO RHEL-06-000256 references: CM-7, 366, Test attestation on 20121024 by DS |
DNS ServergroupMost organizations have an operational need to run at least one nameserver. However, there are many common attacks involving DNS server software, and this server software should be disabled on any system on which it is not needed. |
contains 3 rules |
Disable DNS ServergroupDNS software should be disabled on any machine which does not need to be a nameserver. Note that the BIND DNS server software is not installed on Red Hat Enterprise Linux 6 by default. The remainder of this section discusses secure configuration of machines which must be nameservers. |
contains 2 rules |
Disable DNS Serverrule
The $ sudo chkconfig named offRationale: All network services involve some risk of compromise due to implementation flaws and should be disabled if possible. Remediation script:
|
Uninstall bind PackageruleTo remove the $ sudo yum erase bindRationale: If there is no need to make DNS server software available, removing it provides a safeguard against its activation. |
Protect DNS Data from Tampering or AttackgroupThis section discusses DNS configuration options which make it more difficult for attackers to gain access to private DNS data or to modify DNS data. |
contains 1 rule |
Authenticate Zone TransfersruleIf it is necessary for a secondary nameserver to receive zone data via zone transfer from the primary server, follow the instructions here. Use dnssec-keygen to create a symmetric key file in the current directory: $ cd /tmp $ sudo dnssec-keygen -a HMAC-MD5 -b 128 -n HOST dns.example.com Kdns.example.com .+aaa +iiiiiThis output is the name of a file containing the new key. Read the file to find the base64-encoded key string: $ sudo cat Kdns.example.com .+NNN +MMMMM .key dns.example.com IN KEY 512 3 157 base64-key-stringAdd the directives to /etc/named.conf on the primary server:
key zone-transfer-key { algorithm hmac-md5; secret "base64-key-string "; }; zone "example.com " IN { type master; allow-transfer { key zone-transfer-key; }; ... };Add the directives below to /etc/named.conf on the secondary nameserver:
key zone-transfer-key { algorithm hmac-md5; secret "base64-key-string "; }; server IP-OF-MASTER { keys { zone-transfer-key; }; }; zone "example.com " IN { type slave; masters { IP-OF-MASTER ; }; ... }; warning
The purpose of the dnssec-keygen command is to
create the shared secret string base64-key-string. Once this secret has been
obtained and inserted into named.conf on the primary and secondary servers, the
key files Kdns.example.com .+NNN +MMMMM .key and Kdns.example.com .+NNN +MMMMM
.private are no longer needed, and may safely be deleted. The BIND transaction signature (TSIG) functionality allows primary and secondary nameservers to use a shared secret to verify authorization to perform zone transfers. This method is more secure than using IP-based limiting to restrict nameserver access, since IP addresses can be easily spoofed. However, if you cannot configure TSIG between your servers because, for instance, the secondary nameserver is not under your control and its administrators are unwilling to configure TSIG, you can configure an allow-transfer directive with numerical IP addresses or ACLs as a last resort. identifiers: CCE-27496-9 references: CM-7 |
FTP ServergroupFTP is a common method for allowing remote access to
files. Like telnet, the FTP protocol is unencrypted, which means
that passwords and other data transmitted during the session can be
captured and that the session is vulnerable to hijacking.
Therefore, running the FTP server software is not recommended.
|
contains 2 rules |
Disable vsftpd if Possiblegroup |
contains 2 rules |
Disable vsftpd Servicerule
The $ sudo chkconfig vsftpd offRationale: Running FTP server software provides a network-based avenue of attack, and should be disabled if not needed. Furthermore, the FTP protocol is unencrypted and creates a risk of compromising sensitive information. Remediation script:
|
Uninstall vsftpd Packagerule
The $ sudo yum erase vsftpdRationale: Removing the vsftpd package decreases the risk of its accidental activation. |
Web ServergroupThe web server is responsible for providing access to
content via the HTTP protocol. Web servers represent a significant
security risk because:
The system's default web server software is Apache 2 and is provided in the RPM package httpd . |
contains 3 rules |
Secure Apache ConfigurationgroupThe |
contains 3 rules |
Restrict Web Server Information Leakagegroup
The |
contains 1 rule |
Set httpd ServerTokens Directive to Prodrule
ServerTokens ProdRationale: Information disclosed to clients about the configuration of the web server and system could be used to plan an attack on the given system. This information disclosure should be restricted to a minimum. identifiers: CCE-27425-8 references: CM-7 |
Configure Operating System to Protect Web ServergroupThe following configuration steps should be taken on the machine which hosts the web server, in order to provide as safe an environment as possible for the web server. |
contains 2 rules |
Restrict File and Directory Accessgroup
Minimize access to critical |
contains 2 rules |
Set Permissions on the /var/log/httpd/ DirectoryruleEnsure that the permissions on the web server log directory is set to 700: $ sudo chmod 700 /var/log/httpd/This is its default setting. Rationale: Access to the web server's log files may allow an unauthorized user or attacker to access information about the web server or alter the server's log files. identifiers: CCE-27150-2 references: CM-7 |
Set Permissions on All Configuration Files Inside /etc/httpd/conf/ruleSet permissions on the web server configuration files to 640: $ sudo chmod 640 /etc/httpd/conf/*Rationale: Access to the web server's configuration files may allow an unauthorized user or attacker to access information about the web server or to alter the server's configuration files. identifiers: CCE-27316-9 references: CM-7 |